
High-Performance Computation of
Distributed-Memory Parallel 3D Voronoi and

Delaunay Tessellation

Tom Peterka
Argonne National Laboratory

9700 S. Cass Ave.
Argonne IL 60439 USA

tpeterka@mcs.anl.gov

Dmitriy Morozov
Lawrence Berkeley National Laboratory

1 Cyclotron Rd.
Berkeley CA 94720 USA

dmitriy@mrzv.org

Carolyn Phillips
Argonne National Laboratory

9700 S. Cass Ave.
Argonne, IL 60439 USA

cphillips@anl.gov

Abstract—Computing a Voronoi or Delaunay tessellation from
a set of points is a core part of the analysis of many simulated
and measured datasets: N-body simulations, molecular dynamics
codes, and LIDAR point clouds are just a few examples. Such
computational geometry methods are common in data analysis
and visualization; but as the scale of simulations and observations
surpasses billions of particles, the existing serial and shared-
memory algorithms no longer suffice. A distributed-memory
scalable parallel algorithm is the only feasible approach. The
primary contribution of this paper is a new parallel Delaunay
and Voronoi tessellation algorithm that automatically determines
which neighbor points need to be exchanged among the sub-
domains of a spatial decomposition. Other contributions include
periodic and wall boundary conditions, comparison of our method
using two popular serial libraries, and application to numerous
science datasets.

Keywords—computational geometry; Voronoi, Delaunay tessel-
lation

I. INTRODUCTION

Space-filling tessellations are fundamental geometric con-
structs for converting particle data into a continuous manifold
that can be interpolated, differentiated, and integrated. Appli-
cations of Voronoi and Delaunay tessellations abound: point-
cloud surface reconstructions, geographical information sys-
tems, finite element methods, and particle-based simulations
all require converting discrete point data into a continuous
field during some stage of their computation, analysis, or
visualization. The explosion in data rates in all these appli-
cations requires distributed-memory parallel tessellations; yet,
few scalable algorithms exist.

In this paper, we demonstrate several marked improvements
over the prior state of the art. Our new parallel algorithm is
scalable in time and space. It features both parallel Voronoi and
Delaunay tessellations, automatic neighbor particle determina-
tion, periodic boundary conditions, truncated wall boundary
conditions, a comparatively lightweight data model, and paral-
lel netCDF output format. We implement our parallel solution

SC14, November 16-21, 2014, New Orleans
978-1-4799-5500-8/14/$31.00 c©2014 IEEE

on top of two popular serial computational geometry libraries
and compare performance.

Our parallel algorithm exploits the symmetric influence of
neighbor points across subdomain boundaries. That is, an input
point in a neighboring subdomain (called a block) affects the
tessellation in a local block if and only if there is an input point
in the local block that affects the tessellation in the neighboring
block. Thus, neighbor point exchanges can be determined lo-
cally, enabling fast communication. Our algorithm determines
these exchanges automatically in several tessellation stages
interspersed with neighborhood communication. Each stage
communicates fewer points than the previous stage; the first
exchange features a heuristic neighbor determination in order
to reduce communication, while the second stage guarantees
that all required points have been sent to all neighbors.

We evaluate our algorithm with synthetic points, dark mat-
ter tracer particles in two cosmology simulations, polymers in
two molecular dynamics simulations, and subatomic particles
in a plasma fusion simulation. In addition to testing the relative
impact of two underlying serial libraries on the performance
and memory footprint of our algorithm, we evaluate strong
and weak scaling of our parallel algorithm with tests of up to
20483 particles and 128K processes on IBM Blue Gene/Q and
Cray XC30 supercomputers.

II. BACKGROUND AND RELATED WORK

Computational geometry terms used throughout the paper
are defined below followed by a review of serial and parallel
tessellation algorithms and other software on which we depend
for this work.

A. Voronoi and Delaunay Definitions

Figure 1 defines the geometric terms used throughout
this paper. Raw data (for example, particles in an N-body
simulation) are represented as x,y,z input points; several such
input points are drawn as black dots in the diagram. A
Voronoi tessellation consisting of polygons (one such polygon
highlighted in red) is drawn in the figure along with its
dual Delaunay tessellation represented by triangles (one such
triangle highlighted in blue). The diagram is drawn in 2D for
simplicity, but all our work is in 3D: polygons in the figure
correspond to polyhedra and triangles to tetrahedra.

Delaunay cell

Voronoi cell Voronoi face

Delaunay face

V
o
ro
n
o
i
ve
rt
ex

D
el
a
u
n
ay

ci
rc
u
m
sp
h
er
e

Fig. 1. Voronoi and Delaunay tessellation nomenclature. Input points are
black dots. Voronoi tessellation is illustrated with black edges. Delaunay
tessellation is in blue. A Voronoi cell is highlighted with a red shaded polygon.
A Delaunay cell is highlighted with a blue shaded triangle. An empty Delaunay
circumsphere is shown in green.

The Voronoi tessellation of an input point set is a decom-
position of the ambient space into a set of convex polyhedra
called Voronoi cells. Each Voronoi cell Vi is associated with
one input point si, called the site of the cell. Given a set of
input points, each Voronoi cell Vi is the convex polyhedron
containing the region of the ambient space no farther from the
site of the cell si than from any other site s j. Formally,

Vi =
{

x ∈ R3 | d(x,si)≤ d(x,s j) ∀ j
}
, (1)

where d(x,si) is the distance between a location in the ambient
space x and the site si. Voronoi cells can be finite or infinite.
Two Voronoi cells in the center of Figure 1 are finite; the
remaining cells around the periphery are infinite. A Voronoi
cell is infinite if and only if its site lies on the convex hull of the
input points. Two neighboring Voronoi cells Vi and Vj intersect
along a common two-dimensional Voronoi face, which is a
subset of the plane of points equidistant from the two sites, si
and s j, {x ∈ R3 | d(x,si) = d(x,s j)}. In 3D, Voronoi faces are
polygons.

The Delaunay tessellation is the dual of the Voronoi tes-
sellation: its vertices are the input points. In 3D, its faces (also
called facets) are triangles. If two Voronoi cells intersect in a
common face, then there is a dual Delaunay edge. Equivalently,
a Delaunay edge connects sites si and s j if and only if there
exists a point x ∈ R3 that is closer to si and s j than to any
other site and equidistant from both. Similarly, the intersections
of three and four Voronoi cells form a Delaunay triangle
and tetrahedron, respectively. It follows immediately from the
definition of the Voronoi cells that the circumsphere of a
Delaunay tetrahedron (the unique sphere that passes through
the four vertices of the tetrahedron) is centered on a Voronoi
vertex (the dual of the tetrahedron) and contains no input points
in its interior. One such circumsphere is shown in Figure 1.

Throughout the paper we assume that the input points lie
in general position, meaning no five of them (in 3D) lie on
the same sphere. In practice, this assumption is often violated
(consider, for example, points on the integer lattice). It is
nonetheless justified because the serial software we rely on has
sophisticated ways of simulating a symbolic perturbation of the
input. Surveying such work is outside the scope of this paper,
but we refer the interested reader to an article by Seidel [1].

B. Computational Geometry Algorithms

Voronoi and Delaunay tessellations are constructed by
partitioning the space into cells according to the positions of
the input points. The serial algorithms for such a computation
are classical topics in computational geometry. Any book on
the subject [2], [3] covers them extensively. We recommend
the latter reference for a particularly succinct treatment of all
the topics relevant to this paper. In 2D, Lawson’s classical
algorithm [4] identifies edges that violate the Delaunay con-
dition and flips them until no such edges remain. In the worst
case it performs O(n2) flips, and it does not extend to higher
dimensions.

Instead, the higher-dimensional algorithms for constructing
Delaunay tessellations work incrementally. They insert new
points one by one in random order and update the tessellation,
either by flipping Delaunay faces or identifying the full set of
Delaunay cells that needs to be replaced. Notable results on
randomized incremental construction include those of Clarkson
and Shor [5] and Guibas et al. [6]. The latter algorithm is
extended to higher dimensions by Edelsbrunner and Shah [7],
who give a randomized algorithm with expected running time
of O

(
n logn+ndd/2e), where n is the number of input points,

and d is the dimension. All these algorithms identify the
standard reduction of the problem of computing Delaunay
tessellation in dimension d to the computation of the convex
hull in dimension d + 1, by lifting the input points onto a
paraboloid.

The Quickhull algorithm [8], which underpins one of the
serial libraries we use in this paper, processes the input points
by picking the farthest point from the already processed set.
Other than this change it performs the same incremental op-
erations as the other algorithms. The authors report empirical
speedups, although not for the kinds of point sets that arise
from the reduction of the Delaunay problem.

Previous distributed-memory parallel computational geom-
etry algorithms date back to the 1990s and are either 2D or
for smaller problem and system sizes than encountered today
in high-performance computing (HPC). Miller and Stout [9]
examined parallel algorithms for a convex hull of 2D points.
Jeong [10] derived a parallel 2D Voronoi diagram algorithm,
and Dehne et al. [11] presented a parallel 3D convex hull
algorithm. The work of Jeong and Dehne et al. was theoretical;
neither paper included performance measurements on an actual
machine. Blelloch et al. [12] generated a 2D Delaunay trian-
gulation for various data distributions on 8 processes. Cignoni
et al. [13] presented two parallel algorithms for 3D Delaunay
tessellation for 64 processes.

The largest example to date of parallel tessellations is that
of Peterka et al. [14]. They generated a Voronoi tessellation
of 10243 dark matter tracer particles in situ with a cosmology
simulation running on 16K MPI processes. Their paralleliza-
tion, built on the Qhull serial implementation of the Quickhull
algorithm, calculated only the Voronoi and not the Delau-
nay tessellation. Moreover, the single-stage parallel algorithm
required the user to provide the width of the ghost region
over which to exchange particles. This requirement limited its
usability to specific applications where the width of the ghost
region was known in advance; hence, the authors restricted
their evaluation to a cosmology simulation where past experi-

ence dictated the appropriate ghost size. For general-purpose
usage, estimating an accurate ghost region size is difficult, and
errors in this estimate have direct consequences: overestimat-
ing causes unnecessary communication and memory usage,
while underestimating leads to an erroneous tessellation.

C. Dependencies

DIY [15], [16] is our data-parallel programming library.
Built atop MPI [17], [18], DIY provides configurable data
partitioning and scalable data exchange in a distributed-
memory HPC environment. DIY is initialized with information
from an input data model about its block decomposition and
neighborhood connectivity. In this paper, we adopt DIY’s ter-
minology and define a block as the fundamental unit of domain
decomposition and local work. It is a hexahedral region of
space containing a subset of the input points. An MPI process
may own more than one block. A neighborhood is the union of
a block with its immediate spatially adjacent blocks that share a
face, edge, or corner. Therefore, in 3D, a (1-)neighborhood is a
convex set of up to 27 blocks. In this project, we rely on DIY’s
neighborhood exchange algorithm; in particular on its ability
to incrementally enqueue input points to neighbors within a
distance given by the tetrahedron circumsphere radius (Section
III-A) and then to exchange the enqueued points with those
neighbors. DIY can optionally include neighbors on opposite
sides of the domain when periodic boundary conditions are
selected.

For the serial computational geometry engine, we build
with either the Qhull or CGAL library. Qhull1 is an open-
source implementation of the Quickhull algorithm. It han-
dles high-dimensional input points and is robust to floating-
point roundoff errors. Matlab, R, Octave, and Mathematica
all use Qhull for their computational geometry functions.
CGAL (Computational Geometry Algorithms Library) [19]
is an alternative implementation that calculates the Delaunay
tessellation, which the user can convert to the dual in order
to produce the Voronoi tessellation. Qhull is self-contained,
whereas CGAL requires Boost2 and GNU numerical libraries.3

From a programmability standpoint, CGAL4 [19]–[21] is
easier to work with than Qhull. Qhull is an older library with
a C interface and no documentation for the library API; hence,
determining how to access different geometric entities required
reading its source code. In comparison, CGAL has a modern
C++ interface with a documented API. For either library, rather
than building our code atop the native data of the geometry
engine, we choose to copy the geometry data into our own
structures and then delete the geometry engine’s copy. This
allows us to experiment with different geometry libraries and
more easily interface with other libraries such as the Parallel
NetCDF (PnetCDF) I/O library.

PnetCDF 5 [22] is a high-level I/O library for reading and
writing a self-describing portable file in Unidata’s NetCDF for-
mat.6 A PnetCDF file contains one or more multidimensional

1www.qhull.org
2www.boost.org
3gmplib.org, www.mpfr.org
4www.cgal.org
5www.mcs.anl.gov/parallel-netcdf
6www.unidata.ucar.edu/software/netcdf/

arrays. Through a C interface, one first declares variables,
dimensions, and attributes in “define” mode; individual arrays
are then written in “data access” mode. Both PnetCDF and
HDF5 [23], another popular high-level scientific data library,
derive their parallel performance from MPI-I/O [24].

III. PARALLEL ALGORITHM

Our approach is to develop a correct and efficient
distributed-memory parallel algorithm and implement it on top
of mature, high-quality serial computational geometry libraries
that already exist. Our parallel algorithm is modular and
independent of the particular serial library used; essentially,
the serial tessellation is a black box. The choice of black box
will have different performance implications on the parallel
algorithm; we compare the performance when using two
popular serial geometry libraries in Section V-A. The focus of
this section, however, is on the parallel algorithm irrespective
of the underlying serial library.

Our parallel algorithm is initialized with information from
an input data model that includes a spatial decomposition of
the input points. Thus, each block contains a defined region of
space and all the points inside that space. Each block calculates
a local tessellation based on its subset of points and owns that
part of the global tessellation. In order to generate the correct
global tessellation, points are exchanged between neighboring
blocks, and the local tessellations are adjusted. The overall
steps are listed in Algorithm 1.

Algorithm 1 Parallel Tessellation
1: Compute initial local tessellation
2: Exchange initial neighbor points
3: Compute augmented local tessellation
4: Exchange remaining neighbor points
5: Compute final local tessellation
6: Write tessellation to storage

The local tessellation is computed three separate times in
steps 1, 3, and 5 of Algorithm 1, each time with more points
as a result of the interspersed neighbor point exchanges in
steps 2 and 4. Only the Delaunay tessellation is computed;
the dual Voronoi tessellation is generated as needed from the
Delaunay as explained in Section IV. Even though both Qhull
and CGAL use an underlying incremental algorithm, to the
best of our knowledge, Qhull does not expose the ability to
add input points to an existing tessellation. When using Qhull,
therefore, we delete the previous tessellation and compute it
anew each time. If CGAL is used, the later stages are less
expensive than the earlier ones because we take advantage of
the incremental addition of input points.

The primary contribution of our parallel algorithm is the
correct handling of the neighborhood communication in order
to generate the correct global tessellation. In the remainder
of this section, we first describe the algorithm that determines
which points are exchanged between a block and its neighbors.
Then we prove that this algorithm results in the correct global
tessellation. Next, we survey how this code handles different
boundary conditions that affect the global tessellation. We also
discuss the memory and storage requirements of our parallel
algorithm.

Fig. 2. Left: Circumspheres at vertices of a finite Voronoi cell. Right: An
infinite Voronoi cell and the half-spaces supported by the facets of the convex
hull. The edges of the blocks are shown by dotted lines.

A. Neighbor Point Exchange

In this section, we describe how, using only local infor-
mation, each input point of a block can be checked whether it
must be sent to a neighboring block. Input points are classified
into two categories: (1) those points whose Voronoi cells are
finite and (2) those points whose Voronoi cells are infinite.
(Recall from Section II-A that the site of an infinite Voronoi
cell lies on the convex hull of the local input points.) Whether
and to which neighboring blocks an input point must be sent
differ for the two cases.

1) Points with Finite Voronoi Cells: For an input point
with a finite Voronoi cell, to test whether the point must be
exchanged, we construct circumspheres at the Voronoi cell
vertices, as shown in the left side of Figure 2. These spheres
are the circumspheres of the tetrahedra of the dual Delaunay
tessellation. The center of each sphere is a vertex of the
Voronoi cell, and the radius is the distance from the vertex
to the Voronoi cell site (input point associated with the cell).
The left side of Figure 2 highlights one such Voronoi cell
in gray and its set of circumspheres in green. If the Voronoi
cell is correct in the global tessellation, then by definition, no
other input point may be inside its circumspheres. Thus, if
the circumspheres do not intersect a neighboring block, then
no remote point can change the cell: we say it is finalized.
If, however, a circumsphere intersects one or more neighbor
blocks, then it is possible that a remote point contained in a
neighboring block could change the Voronoi cell. Thus, the
input point (the site of the Voronoi cell) is sent to all the
neighbors intersected by any circumsphere of its Voronoi cell.
In the left side of Figure 2, the site of the gray cell will be sent
to its right, lower, and lower-right neighbors. The green and red
circumspheres in Figure 3 highlight finalized and nonfinalized
cells, respectively.

2) Points with Infinite Voronoi Cells: For an input point
with an infinite Voronoi cell, determining where the point must
be sent is more complicated. The right side of Figure 2 shows
an infinite Voronoi cell highlighted in gray. The input point
of an infinite Voronoi cell is on the convex hull of the input
points in the block. Each facet of the convex hull that has the
input point as a vertex defines an outer half-space, illustrated
in the figure with dark red lines with arrows. A point in such
a half-space may be a Delaunay neighbor of the input point
under consideration. An input point on the convex hull supports
multiple half-spaces, which in turn intersect many neighboring

blocks. Conservatively, the input point would be sent to all the
intersected neighbors.

In practice, it is unlikely that all intersected neighboring
blocks contain points that will create edges with every point on
the local convex hull. We would like to reduce communication
and memory footprint by limiting unnecessary point exchanges
whenever possible. Hence, we use the following two-pass
heuristic. In the first pass, the site of each infinite cell is
sent to its (single) nearest neighbor block. (In the future, this
heuristic might be tuned by adding additional neighbors to the
first pass.) This is the most likely block to contain a remote
point; and after the subsequent local tessellation, the Voronoi
cell may no longer be infinite. In the second pass, any local
input points that still have infinite Voronoi cells are sent to
all 26 neighbors, excluding the neighbor already covered in
the first pass. Local input points that now have finite cells
are handled as in Section III-A1. The two-pass heuristic point
exchange corresponds to steps 2-4 of Algorithm 1; the details
of each pass of the neighbor exchange are in Algorithm 2.

Algorithm 2 Neighbor Point Exchange
Pass 1:
1: Enqueue finite cell sites that are near to block boundaries

to any neighbors within circumsphere radii
2: Enqueue infinite cell sites to single closest neighbor
3: Exchange enqueued neighbor points
4: Compute new tessellation

Pass 2:
5: Enqueue local finite cell sites that were infinite in Pass 1

to any neighbors within circumsphere radii
6: Enqueue remaining local infinite cell sites to all neighbors
7: Exchange enqueued neighbor points

The following table illustrates the advantages of our heuris-
tic on synthetic data partitioned into eight blocks. The first
column lists the total number of input points; the second, the
largest number of points on the convex hull of any block after
the initial local computation; the third, the largest number of
points sent to every neighbor by any block after the second
pass. Approximately one-third of the points on the convex hull
remain to be sent to all neighbors in the final pass; but for the
majority of convex hull points, it sufficed to send them only
to the single nearest neighbor.

Number of points Infinite cells Sent to all
512 35 12

4,096 65 25
32,768 103 38

125,000 151 49
421,875 187 62

1,000,000 217 76

B. Proof of Correctness of the Global Tessellation

We now prove that Algorithm 2 will result in the correct
global tessellation, provided that the blocks used are suffi-
ciently large in spatial extent. Table I summarizes the notation
needed in order to prove the correctness of our algorithm. The
global space is partitioned into a collection of blocks, {Bi}. We
denote by Ni the 1-neighborhood of the block Bi. We assume in

TABLE I. NOTATION

Symbol Meaning
P the set of all input points
Del(P) Delaunay tessellation of P
σ ∈ Del(P) a tetrahedron in Del(P)
o(σ) the circumsphere of σ

B a block of the input domain decomposition
DelB(P) the set of tetrahedra in Del(P) with at least one vertex in B
UB the set of vertices of DelB(P)
N the 1-neighborhood of B, i.e., the union of B with its immediate

neighbor blocks
PN the subset of points in P in the neighborhood N

our algorithm and in the following proof that the input point
set P is such that all Delaunay edges 〈p,q〉, incident on a
point p ∈ Bi, are contained in Ni; that is, p ∈ Bi → q ∈ Ni.
Consequently, Delaunay tetrahedra cannot be larger than the
1-neighborhood of blocks. This restriction could be relaxed
by employing neighborhoods larger than 1-neighborhoods or,
alternatively, by employing multiple rounds of communication
between overlapping 1-neighborhoods. We did not, however,
do this in our algorithm.

The following proof may be summarized as follows. Under
the assumption that no Delaunay edges extend beyond a neigh-
borhood, it suffices to compute the Delaunay tessellation of the
input points in the neighborhood, that is, DelB(P) = DelB(PN)
(Theorem 2). Moreover, if UB are the vertices of DelB(P), then
for any superset W ⊇ UB, DelB(P) = DelB(W) (Lemma 3).
The union of the input points sent to B and the input points
originally in B are a superset of UB, and, therefore, suffice
(Theorem 5).

An important consequence of the logic is that we can
rely on symmetry to simplify the communication protocol:
when constructing a Delaunay tessellation, if point p in block
Bi needs to construct an edge to point q in a neighbor B j,
then point q also needs to construct an edge to point p. This
allows communication to be determined locally without the
need to poll neighbors as to whether they have any points
contained in the local circumspheres. Instead, we only need to
determine which points to send to neighbors, thus avoiding a
more complicated handshake protocol. (See the right side of
Figure 3.)

Details of the proof follow.

Lemma 1. If a point set Q 6⊆ P falls inside the circumsphere
of a Delaunay tetrahedron σ , Q⊆ o(σ),σ ∈Del(P), then each
vertex of σ has an edge to some point q ∈ Q in Del(P∪Q).

Proof: We first prove that if a single point q /∈ P falls
into the circumsphere of a Delaunay tetrahedron σ , q ∈
o(σ),σ ∈ Del(P), then q has edges to every vertex of σ in
Del(P∪{q}). Let p be a vertex of the tetrahedron σ . Let O
be the circumcenter of σ . The perpendicular bisector between
p and q intersects the line segment pO at O′: this intersection
exists because, by assumption that q falls inside o(σ), we have
|qO|< |pO|. Since O′ lies on pO and, therefore, inside o(σ),
O′ is closer to p and q than to any point in P. By definition
of Delaunay triangulation, there is a Delaunay edge between
p and q. Extending the claim from a single point q to a set of
points Q follows by induction.

The following theorem establishes that it suffices to com-
pute the Delaunay tessellation of the point set restricted to

the neighborhood of a block, DelB(PN), in order to correctly
compute the Delaunay tetrahedra that have a vertex in the
block, DelB(P).

Theorem 2. If no edge in Del(P), incident on a vertex p ∈ B,
leaves N, then DelB(P) = DelB(PN).

Proof: DelB(P)⊆DelB(PN) follows immediately from the
definition of the Delaunay tessellation and the assumption of
the theorem. To show DelB(P)⊇DelB(PN), let σ ∈DelB(PN).
Then, by definition, o(σ) is empty in N, and σ contains a
point p∈ B. Suppose σ is not in DelB(P). Then o(σ) contains
a set of points Q outside PN , that is, Q⊆ P,Q∩PN = /0. Then,
by Lemma 1, each vertex of σ , and specifically p, has an edge
to a point in Q, which contradicts the assumption that no edge
leaves N.

Lemma 3. If P⊇W ⊇UB, then DelB(W) = DelB(P).

Proof: DelB(P)⊆DelB(W) follows immediately from the
definition of the Delaunay tessellation. To show DelB(P) ⊇
DelB(W), let σ ∈ DelB(W). Suppose σ 3 p ∈ B. Suppose σ

is not in DelB(P). Then o(σ) contains a set of points Q⊆ P.
By definition of a Delaunay tetrahedron, Q∩W = /0. Then, p
has an edge to some q ∈ Q in Del(P), which contradicts the
assumption that UB ⊆W .

Lemma 4. Let B′ be a neighbor of block B; B′ ⊆ N with
point q ∈ B′. If for some set of points P′ ⊆ P, with q ∈ P′, the
circumspheres of all the tetrahedra in Del(P′) that contain q
do not intersect B, then q /∈UB.

Proof: Suppose the lemma is false, and there is some edge
pq in Del(P), with p ∈ B. Then, the perpendicular bisector of
pq must intersect the cell of q in the Voronoi tessellation of
P′. Since the bisector of pq is a plane and the Voronoi cell is
a convex polyhedron, the fact that they intersect implies that
there is a vertex O of the polyhedron that lies closer to p
than to q (because we assumed that the points lie in general
position, the bisector of pq cannot pass through a Voronoi
vertex). But that means that the circumsphere centered at O
that passes through q contains point p, which contradicts the
assumption of the lemma.

The following theorem implies that the only points that
need to be sent to a neighboring block are those whose
surrounding circumspheres intersect the neighbor, thus proving
the correctness of our neighbor point communication algo-
rithm.

Theorem 5. The set of vertices in B after the two passes of
the algorithm contains UB as a subset.

Proof: By assumption, PN ⊇UB. A point q in a neighbor
block B′ whose surrounding circumspheres (circumspheres of
the tetrahedra containing q) do not intersect B cannot belong to
UB (Lemma 4). By the end of Algorithm 2, we have not sent a
point q∈ B′ to B only if we have found a set of circumspheres
that pass through q, none of which intersects B. Since adding
a point to the Delaunay tessellation can only shrink the union
of circumspheres around any other point, we do not need to
retest the Voronoi cells that were already finite in the first pass
of the algorithm.

p
q

Bi Bj

Fig. 3. Left: The green Delaunay circumsphere is contained entirely in the
local block, and therefore the blue triangle remains Delaunay in the final
triangulation. The red circumspheres intersect other blocks; the triangles they
circumscribe are not yet finalized. Right: Despite the fact that point q falls
into an (unfinished) circumsphere supported by point p, we don’t need to send
it to block Bi since its surrounding circumspheres are finalized (empty of any
points).

C. Boundary Conditions

Our tessellation code supports three types of boundary
conditions: (1) no boundary conditions, where the points are
embedded in infinite space, (2) periodic boundary conditions,
where the points are embedded in a three-dimensional torus,
and (3) wall boundary conditions, where the points are inside a
box. The “no boundary condition” case requires no additional
effort. Blocks on the boundary of the global domain do not
have neighbors in specified directions; thus, no points are
enqueued for exchange in these directions.

1) Periodic Boundary Conditions: Periodic boundary con-
ditions are common in cosmology and molecular dynamics.
For periodic boundary conditions, a block at one side of the
global domain is a neighbor of a block on the opposite side
of the domain; in other words, the domains wraps around
a torus. Our method supports optional periodic boundary
conditions: when enabled, our code tracks where the domain
wraps around and correctly handles data transfers between
neighbors across these boundaries. When using our Voronoi
or Delaunay tessellation in subsequent applications (Section
IV), all information, such as the positions of vertices, is stored
locally in the block in its final transformed geometry. That is,
users of a finished tessellation can safely ignore the details
of any underlying wraparound transformations that may have
been performed during the construction of the tessellation.

2) Wall Boundary Conditions: Wall boundary conditions
can be found in simulations of particles packed in a container
or sedimenting against a surface. Under such conditions, if a
Voronoi cell intersects a wall, the Voronoi cell should have a
face that conforms to the wall. As shown in Figure 4, our code
supports an optional planar wall boundary condition where the
walls form the boundaries of the global domain. Details of
implementing this wall boundary condition follow.

To generate the planar wall cut of a Voronoi cell intersect-
ing a wall, we use the Voronoi definition that every planar
face of a Voronoi cell is the midplane between the site and
another input point. Therefore, to apply a planar wall boundary
condition, we can add a “virtual” input point on the opposite
side of the wall to force a Voronoi face to coincide with the

Fig. 4. Left: No boundary conditions. Right: Wall boundary conditions on
the outermost six sides of overall domain of 163 particles and 8 blocks.

wall, in essence cutting the cell at the wall. Specifically, for
each input point in the block, if the associated Voronoi cell is
finite, then a new point is generated for each wall that intersects
the Voronoi cell. If the Voronoi cell is infinite, then a new
point is generated for each of the walls. 7 These new points
are the reflection of the site point across the planar boundary
walls. The virtual points are then added to the list of points
in the block, as if they were received from a neighbor. Thus,
in the final tessellation, following the final neighbor exchange,
each Voronoi cell that intersects a planar wall at the boundary
has a face that conforms to the wall. These virtual points
have no other impact on the tessellation and are not actually
communicated to any neighboring blocks.

D. Memory and Storage Requirements

1) Data Size: Upon completion of our algorithm, each
block contains the following tessellation data: (1) the number
and positions of its original input points; (2) additional neigh-
bor points received during the communication phases of the
algorithm, and (3) the number of Delaunay tetrahedra, the four
vertex indices, and four neighbor indices for each tetrahedron.
In the datasets that we tested, each input point is shared by 7
Delaunay tetrahedra on average. The third (center right) plot
of Figure 6 shows the total memory usage per particle of our
algorithm during the course of tessellating 262,144 synthetic
particles generated by randomly displacing particles lying on
a 643 grid by a maximum distance of 2 grid cells. Both
implementations of our algorithm, one using Qhull and the
other with CGAL, are shown, together with annotations of the
significant stages of the algorithm.

Our memory measurements confirm an earlier comparison
[25], which says that the CGAL library requires approximately
four times less memory than Qhull. The ratio in Figure 6
is closer to 2.5 times smaller for CGAL because we copy
the tessellation into our own data structure and because our
measurements reflect the resident size of the entire executable.
The fact that Qhull does not allow incremental updates to its
tessellation is also evident in Figure 6 by the three spikes in
memory usage in contrast to the CGAL usage that remains
fairly constant.

2) Storage Format: We write the tessellation in parallel
with PnetCDF [22] into a single file in order to take advantage

7This is performed in lieu of determining precisely which set of walls cut
the infinite cells.

C

D E

F
AB

P

h

A

Fig. 5. Left: decomposition of a convex polygon into triangles to compute its
area. Right: decomposition of a convex polyhedron into pyramids to compute
its volume.

of parallel I/O performance on HPC storage systems while at
the same time having a self-describing portable file format.
Two related issues need to be addressed when converting our
parallel unstructured mesh to an array-based file model: the
fact that our model is composed of independent parallel blocks,
and each block is a different size. We write one array in the file
for each primary component of the data model; for example,
all the input point positions from all blocks are in one array in
the file. To do so, processes first exchange data sizes for each
local contribution to the global arrays for each component of
the data model and compute prefix sums of starting offsets for
their blocks; then processes write their blocks’ data collectively
for each global array.

Consumers of the tessellation file may also be block-based
parallel programs; hence, the block structure must be recov-
erable from the PnetCDF file. Therefore, the block offsets for
each global array are stored along with additional information
about the blocks (extents, global ID, and list of neighboring
blocks). Functions for parallel reading and writing are included
in our library. Including metadata about the blocks (extents,
neighbors) and neighbor points received during the algorithm
introduces overhead in the file size that increases with the
number of blocks. For example, the file size varies from 300
B per particle to 1.3 KB per particle for 16 to 16K processes,
respectively (1 process = 1 block in this case). A large fraction
of the output is integer data, allowing the file to compress to
approximately 50% of its original size. As another example,
the tessellation from a synthetic dataset of 32K particles and
8 blocks was 10 MB raw and 4.5 MB compressed.

IV. USING THE RESULTING VORONOI AND DELAUNAY
TESSELLATIONS IN SUBSEQUENT APPLICATIONS

We describe below how to use a parallel tessellation in
applications. In order to compute some property over the
geometric entities, for example Voronoi cell volume, or simply
for visualization, the tessellation needs to be traversed by
visiting each of its geometric entities (cells, faces, edges,
vertices) once. Applications using the tessellation may also be
parallel programs; hence, our construction of the tessellation
must support both serial and parallel Delaunay and Voronoi
traversal. The Delaunay tessellation is available directly, and
its dual Voronoi tessellation is constructed on the fly by
our code. Such traversals are part of standard machinery in
computational geometry, but for the benefit of readers who
may not be familiar with this topic, we review below how we
generate a Voronoi traversal from our Delaunay data and also
how we compute the volume of a Voronoi cell.

As explained in Section III-D, we compute and store in
memory and on disk only the input points and the Delaunay

tetrahedra. Each tetrahedron is represented by the four indices
into the input points and the four indices to neighboring
tetrahedra that intersect it in a common triangular face. The
two arrays are coordinated such that the ith tetrahedron is
opposite the ith vertex for i = 0,1,2,3. If one of the faces of
the tetrahedron lies on the convex hull of the input points, the
tetrahedron is missing a neighbor across that face. We record
this as a −1 entry for its neighbor.

Delaunay vertices in the same tetrahedron may span neigh-
boring blocks. To facilitate local traversal of Delaunay tetra-
hedra and their conversion into Voronoi faces, we replicate
input points corresponding to remote Delaunay vertices in the
neighboring blocks such that each tetrahedron can be visited
locally. Similarly, all the neighboring Delaunay tetrahedra
corresponding to the vertices for one Voronoi cell are contained
in the same block such that a Voronoi cell can be visited
locally. In such cases, entire Delaunay tetrahedra are duplicated
across neighboring blocks.

Algorithm 3 Delaunay to Voronoi Tessellation
1: for all input points do
2: get neighbor edges of Delaunay tetrahedra
3: for all neighbor edges do
4: generate edge star
5: for all tetrahedra in edge star do
6: compute the tetrahedron circumcenter, c
7: add c to the vertices of the Voronoi face

Since the Voronoi and Delaunay tessellations are dual, the
Voronoi tessellation can be derived from the Delaunay any
time. Each Voronoi face is dual to a Delaunay edge: specifi-
cally, the vertices of the Voronoi face are the circumcenters of
the tetrahedra that share its dual Delaunay edge. We refer to all
edges of the Delaunay tessellation that include an input point
as the neighbor edges of the point and to the set of tetrahedra
that share an edge, listed in the order that they encircle the
edge, as an edge star.

Algorithm 3 iterates over Voronoi geometric entities de-
rived from the Delaunay tessellation. Looping over input
points in line 1 is equivalent to iterating over all Voronoi
cells. Similarly, looping over the neighbor edges in line 3 is
equivalent to iterating over all the Voronoi faces of the current
Voronoi cell, and looping over the Delaunay tetrahedra of the
edge star in line 5 is equivalent to visiting the vertices of the
current Voronoi face. The key step in Algorithm 3 is generating
the edge star data structure. The algorithm for computing
the edge star, given the edge and one initial tetrahedron that
contains the edge, is described in Algorithm 4.

Algorithm 4 Edge Star
1: o← a tetrahedron containing the input edge e = (x,y)
2: add o to the edge star
3: u,v← the two vertices of o that are not in e
4: t← the neighbor of o opposite u
5: while t 6= o do
6: add t to the edge star
7: u← v
8: v← the fourth vertex of t, i.e., the vertex not in {x,y,u}
9: t← neighbor of t opposite u

1e
−0

2
1e

−0
1

1e
+0

0
1e

+0
1

1e
+0

2
128^3 Particles Strong Scaling w/ Qhull

Number of Processes

Ti
m

e
(s

)

16 32 64 128 256 512 1K 2K 4K

Total
Initial Local Tessellation
Initial Neighbor Points
Augmented Local Tessellation
Final Local Tessellation
I/O
Perfect Scaling

1e
−0

2
1e

−0
1

1e
+0

0
1e

+0
1

1e
+0

2

128^3 Particles Strong Scaling w/ CGAL

Number of Processes

Ti
m

e
(s

)

16 32 64 128 256 512 1K 2K 4K

Total
Initial Local Tessellation
Initial Neighbor Points
Augmented Local Tessellation
Final Local Tessellation
I/O
Perfect Scaling 0.

0
0.

5
1.

0
1.

5
2.

0

Memory Usage Qhull and CGAL Comparison

Breakpoint

To
ta

l M
em

or
y

(K
B

 /
pa

rti
cl

e)

1 2 3 4 5 6 7 8 9

Qhull
CGAL

Start

Init. Local Tess.

Neighbor Points

Aug. Local Tess.

Neighbor Points

Fin. Local Tess.

End

0.
1

0.
5

5.
0

50
.0

128^3 Particles Strong Scaling Qhull and CGAL

Number of Processes

Ti
m

e
(s

)

16 32 64 128 256 512 1K 2K 4K

Qhull Total − I/O
CGAL Total − I/O
Perfect scaling

Fig. 6. Strong scaling for 1283 particles tessellated in parallel using Qhull (far left) and CGAL (center left). Total time is further broken down into main
component times. Center right: total memory usage during the execution of the algorithm normalized by the number of particles. Far right: strong scaling
(excluding I/O time) comparison between Qhull and CGAL for 1283 particles.

Many applications require the volume or surface area of
Voronoi cells. Once we have traversed our data structure in
order to generate Voronoi cell faces and vertices, it is straight-
forward to compute the volume and surface area as well. The
area of a Voronoi face, a convex polygon, can be computed by
triangulating the polygon from the first vertex and summing the
area of the triangles. An illustration of this is shown on the left
side of Figure 5. The area of each triangle ABC is calculated
by computing the cross product, area(ABC) = |AB×AC|/2.
The total surface area of the Voronoi cell is the sum of the
areas of its faces.

The volume of the Voronoi cell, a convex polyhedron, is the
sum of the volumes of the pyramids formed between the site
of the cell and each face. If A is the area of a Voronoi face and
d is the length of its dual Delaunay edge, then the volume V of
the pyramid that has the site of the Voronoi cell as its apex and
the Voronoi face as its base polygon is V = A(d/2)/3 = Ad/6,
(right side of Figure 5). Note that since a Voronoi face is the
equidistant plane between the two points of its dual Delaunay
edge, h = d/2 is the height of the pyramid.

V. PERFORMANCE EVALUATION AND APPLICATION TO
SCIENTIFIC DATA

We first evaluate the performance of our parallel algorithm
and then demonstrate its use in three scientific domains.
Performance tests were run on the IBM Blue Gene/Q Mira
and Cray XC30 Edison machines at the Argonne Leadership
Computing Facility (ALCF) at Argonne National Laboratory
and at the National Energy Research Scientific Computing
Center (NERSC) at Lawrence Berkeley National Laboratory,
respectively. Mira is a 10-petaflop system consisting of 48K
nodes, each node with 16 cores (PowerPC A2 1.6 GHz) and
16 GB RAM. Edison is a 2.57-petaflop machine with 5576
nodes, each node with 24 cores (Intel Ivy Bridge 2.4 GHz)
and 64 GB RAM. GCC (version 4.4.6 on Mira, version 4.8.1
on Edison) with -O3 optimization was used to compile the test
code.

A. Synthetic Points

To test the scaling and memory usage of the parallel algo-
rithm, we generated synthetic particles by randomly displacing
points from regular grid positions in various size grids.

Figure 6 shows the full-scale performance results con-
ducted on Mira by using 16 MPI processes per compute
node. In the left two panels, we show the strong scaling of
our parallel algorithm implemented with Qhull and CGAL,
respectively. The total time is further subdivided into five of
the six main components of Algorithm 1. Step 4, exchang-
ing remaining neighbor points, is omitted because this step
required less than 0.1 seconds. Comparing the far left panel to
the center left panel, we observe that CGAL’s local tessellation
time is approximately 5 times faster than Qhull’s, and its
final tessellation is at least 10 times faster. Since CGAL’s
tessellation can be incrementally updated, the cost of the
final tessellation is a small fraction of the initial tessellation.
Overall, excluding the I/O time, using the CGAL library is
5-9 times faster than using Qhull. The file I/O does not scale
well in this test, presumably because this file is too small to be
written by more than 512 processes. Our focus in this paper is
not I/O performance, and we do not investigate it further here.
In the third pane of Figure 6, we show the total memory usage
per particle during the execution of the algorithm (discussed
in Section III-D). A comparison of strong scaling of total time
minus I/O time for 1283 particles with Qhull and CGAL is
shown in the far right side of Figure 6.

Figure 7 shows strong and weak scaling of total time minus
I/O time with CGAL for particle counts ranging from 1283 to
20483 and up to 128K processors. Excluding I/O, the strong
scaling efficiency for 1283 particles is approximately 47%;
for 2048 particles it is 90%. The horizontal dotted lines in
Figure 7 give a visual reference for perfect weak scaling;
each subsequent data point along the same dotted horizontal
line represents eight times the number of input particles and
eight times the number of processes. The data points near the
ends of the middle dotted line (2563 particles at 64 processes
and 20483 particles at 32K processes) have a weak scaling
efficiency of 98%.

B. N-Body Cosmological Simulation

We tested two sources of N-body cosmological simulation
data.

1) HACC: HACC (Hardware/Hybrid Accelerated Cosmol-
ogy Code) [26], [27] is an N-body cosmology code that
exceeded 10 petaflops on ALCF’s Mira IBM Blue Gene/Q
and earned two Gordon Bell Finalist awards [28], [29]. The

0.
1

0.
5

5.
0

50
.0

Strong and Weak Scaling with CGAL

Number of Processes
Ti

m
e

(s
)

16 64 256 1K 4K 16K 64K

2048^3 Particles
1024^3 Particles
512^3 Particles
256^3 Particles
128^3 Particles
Perfect Strong Scaling
Perfect Weak Scaling

Fig. 7. Left: Voronoi tessellation of synthetic data using 163 particles and
8 blocks. Right: strong and weak scaling (excluding I/O time) using CGAL
for a particle counts ranging from 1283 up to 20483. Processor counts range
from 16 to 128K.

code solves the six-dimensional Vlasov-Poisson gravitational
equations by using N-body particle methods.

Figure 8 shows strong scaling results of tessellating particle
data (excluding I/O time) at three time steps from early, mid-
dle, and late in a recent simulation run of 10243 particles. The
original simulation ran by using 512 blocks (MPI processes).
To perform a strong scaling study, we further decomposed each
block by factors of 2 in x,y,z directions until we arrived at the
desired number of processes.

The primary difference between HACC particles and syn-
thetic data is that as the cosmological simulation evolves,
particles cluster into extremely dense and sparse regions. At
the early, middle, and late time step, the ratio of maxi-
mum/minimum number of particles per process is 1.5, 4.3, and
10.4, respectively. The diminishing efficiency of the algorithm
for unbalanced data is evident in the strong scaling efficiency:
77%, 48%, and 14% for the early, middle, and late time steps,
respectively.

2) Nyx: Nyx is a newly developed N-body and gas dynam-
ics code [30] written in C++ and Fortran90. It is based on the
BoxLib8 framework for structured-grid adaptive mesh meth-
ods. Using a hybrid programming model based on MPI and
OpenMP, Nyx follows the evolution of dark matter particles
gravitationally coupled to a gas using a combination of multi-
level particle-mesh and shock-capturing Eulerian methods.
High dynamic range is achieved by applying adaptive mesh
refinement to both gas dynamics and gravity calculations. The
multigrid method is used to solve the Poisson equation for
self-gravity. The mesh structure used to update fluid quantities
also evolves the particles via the particle-mesh method.

The dataset used for the experiments on Edison, in the
left side of Figure 9, is from a middle time step of the
Nyx simulation, with particle imbalance factor between the
processes ranging from 1.5 to 7.1 for 1K to 32K processes. In
addition to the load imbalance inherent in the original dataset,
the imbalance factor increases with the number of blocks in our
scalability study. The reason is that for our scaling experiment
we subdivide blocks into regular-size smaller blocks, which
compounds load imbalance when the data are highly clustered.
The overall strong scaling efficiency between 1K and 32K

8ccse.lbl.gov/BoxLib

10
0

20
0

50
0

10
00

Strong Scaling of HACC Data on Mira

Number of Processes

Ti
m

e
(s

)

512 1K 2K 4K 8K 16K

Time Step 499
Time Step 247
Time Step 68
Perfect Strong Scaling

Fig. 8. Left: Delaunay tessellation of 1283 dark matter tracer particles. Right:
strong scaling (excluding I/O time) using CGAL for three time steps of HACC
data of 10243 particles.

processes is 46%.

C. Soft Matter Simulations

Simulations of microphase separated soft matter systems
are further applications for a large-scale tessellation code. In
such systems, populations of molecules, modeled as multiple
types of beads (particles) bonded together, self-organize in
order to form two or more domains. Each domain contains only
one type of bead. These domains can form simple structures
such as lamallae or more complicated and exotic geometries
such as the double gyroid. By applying a Voronoi tessellation
to such a system and grouping the cells of each component,
properties of the individual domains, such as density and
shape, can be studied as a function of system properties, such
as temperature and concentration [31].

To demonstrate this, we apply a Voronoi tessellation to over
three hundred time steps of a system of 2,765 chains of an A-
B-A triblock copolymer (176,960 total beads) generated from
the model of Pike et al. [32] and found in an alternating gyroid
morphology. By summing the Voronoi cells associated with the
A and B species, we establish that the A species composes
48.5±0.1% of the simulation volume while the B species
composes 51.5±0.1%. This result suggests that because the
B part of the chain component has to stretch or fold, while the
A part of the chain does not, the B domain dilates relative to
the A domain. This type of information could not be obtained
without the ability to easily measure the volume of each
domain, which the Voronoi tessellation allows.

We also can use a Voronoi tessellation to construct the
surface separating one domain from another. In Figure 10,
we have computed the Voronoi tessellation of 1,000 A-B-
C “telechelics” composed of two nanospheres (A and C)
connected by a polymer tether beads (B) for a total of 8,000
beads in a double gyroid morphology [33]. Only the Voronoi
cells associated with the A species are shown in Figure 10.
The tubes and nodes of a gyroid phase are evident in the
structure of the A domain, as is the sixfold wheel structure
characteristic of the double gyroid phase. The facets of the
tessellation define a surface of the A domain. Such surfaces
are usually constructed by using isosurface methods, which
require averaging over many time steps; whereas by using the
tessellation, such surfaces can be constructed for every time
step.

5
10

20
50

Strong Scaling of Nyx Data on Edison

Number of Processes

Ti
m

e
(s

)

1K 2K 4K 8K 16K 32K

1024^3 Particles
Perfect Strong Scaling 5

10
20

50

Strong Scaling of VPIC Data on Edison

Number of Processes

Ti
m

e
(s

)

1K 2K 4K 8K 16K 32K

1024^3 Particles
Perfect Strong Scaling

Fig. 9. Left: Strong scaling (excluding I/O time) using CGAL for a Nyx
middle time step of 10243 particles. Right: Same for one time step of VPIC
data.

D. Plasma Physics Simulations

VPIC [34] is a high-performance 3D electromagnetic rela-
tivistic particle-in-cell code designed to minimize data move-
ment. The code integrates the relativistic Maxwell–Boltzmann
equations in a linear background medium. Individual computa-
tional particles represent many physical particles (for example,
electrons). The particular dataset we used in our experiments
is a 10243 random subsample of the trillion-particle dataset
used in a parallel I/O study by Byna et al. [35]. Delaunay and
Voronoi tessellations can help describe the spatial distribution
of highly energetic particles (including identifying their dense
regions), although in this paper we use this dataset to further
measure the scalability of our algorithm. The running times to
compute the Delaunay tessellation using 1K to 32K processors
on Edison are shown in the right side of Figure 9. The strong
scaling efficiency between 1K and 32K processes is 43%.

VI. CONCLUSION

We presented a new parallel algorithm for computing
Delaunay and Voronoi tessellations by spatially decomposing
the tessellation into blocks and then by using a combination of
three local (serial) tessellations interleaved with two neighbor
point exchanges. The primary challenge of parallelizing the
tessellation is automatically determining the points to exchange
among neighboring blocks in order to form the correct global
tessellation. We proved that our algorithm produces the cor-
rect result provided that all Delaunay edges fit within a 1-
neighborhood of blocks. We also proved that if a tessellation
cell in block A is affected by a point in a neighboring block
B, then the point’s associated cell in block B is also affected
by the point in block A. Hence, all communication can be
determined locally: a block can decide whether and to which
neighbors a point must be sent without having to ask them
first. The block will, in turn, receive the correct set of points
from its neighbors.

We implemented our algorithm with two serial compu-
tational geometry libraries, and we tested strong and weak
scaling up to 20483 synthetically generated particles and 128K
processes. To further demonstrate the use of our algorithm for
scientific data, we applied it to two datasets from cosmology
simulations, two datasets from soft matter simulations, and one
dataset from a plasma physics simulation.

Voronoi and Delaunay tessellations have many applications
for large N-body datasets. Discrete particles can be converted

Fig. 10. Voronoi cells of the A species of the double gyroid. The sixfold
“wheel” structure formed by the A domain is characteristic of the double
gyroid phase.

into a continuous field that can be interpolated, differentiated,
and integrated, operations not possible on the original particles
without some type of sampling or estimation. The statistics of
tessellated cells can further be used to identify and quantify
structures such as cosmological halos and voids, to calculate
macroscopic statistics or morphologies of molecular dynamics
simulations, or to describe the spatial distribution of highly
energetic particles in plasma simulations.

We envision three extensions of our work. First, we are
considering improving memory performance by adapting the
data structure to the native data model of the underlying
serial library. Second, we are considering lifting the restriction
that Delaunay cells must be smaller than the neighborhood
size. This requires potentially exchanging points among larger
neighborhoods (2-neighbors, 3-neighbors, and so forth) over
multiple communication rounds. Third, we are exploring hy-
brid parallel formulations of the algorithm that combine shared
and distributed memory.

ACKNOWLEDGMENTS

We gratefully acknowledge the use of the resources of the
Argonne Leadership Computing Facility (ALCF) and the Na-
tional Energy Research Scientific Computing Center (NERSC).
We are especially grateful to Salman Habib, Katrin Heitmann,
Hal Finkel, and Adrian Pope of the HACC team at Argonne
for the use of their data; George Zagaris of Kitware for use
of his HACC GenericIO library; Zarija Lukić of LBNL for
the Nyx data; Prabhat, Suren Byna, and Kuan-Wu Lin for
assistance with VPIC data; Wei-keng Liao of Northwestern
University for assistance converting the in-memory data model
to pnetCDF; and Gurdamen Khaira, Jian Qin, Juan De Pablo,
and Ryan Marson for providing data for molecular dynamics.
This work was supported by Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under
Contracts DE-AC02-06CH11357 and DE-AC02-05CH11231.
Work is also supported by DOE with agreement No. DE-FC02-
06ER25777.

REFERENCES

[1] R. Seidel, “The Nature and Meaning of Perturbations in Geometric
Computing,” Discrete and Computational Geometry, vol. 19, pp. 1–17,
1998.

[2] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computa-
tional Geometry: Algorithms and Applications. Springer-Verlag, 2008.

[3] H. Edelsbrunner, Topology and Geometry for Mesh Generation. Cam-
bridge University Press, 2001.

[4] C. L. Lawson, “Software for C1 Surface Interpolation,” in Mathematical
Software III, J. R. Rice, Ed. New York: Academic Press, 1977, pp.
161–194.

[5] K. L. Clarkson and P. W. Shor, “Applications of Random Sampling
in Computational Geometry,” Discrete and Computational Geometry,
vol. 4, pp. 387–421, 1989.

[6] L. J. Guibas, D. E. Knuth, and M. Sharir, “Randomized Incremental
Construction of Delaunay and Voronoi Diagrams,” Algorithmica, vol. 7,
pp. 381–413, 1992.

[7] H. Edelsbrunner and N. R. Shah, “Incremental Topological Flipping
Works for Regular Triangulations,” Algorithmica, vol. 15, pp. 223–241,
1996.

[8] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Trans. Math. Softw., vol. 22, pp.
469–483, Dec. 1996. [Online]. Available: http://doi.acm.org/10.1145/
235815.235821

[9] R. Miller and Q. F. Stout, “Efficient Parallel Convex Hull Algorithms,”
IEEE Trans. Comput., vol. 37, no. 12, pp. 1605–1618, Dec. 1988.

[10] C.-S. Jeong, “An Improved Parallel Algorithm for Constructing Voronoi
Diagram on a Mesh-Connected Computer,” Parallel Computing, vol. 17,
no. 4, pp. 505–514, 1991.

[11] F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A. Khokhar,
“A Randomized Parallel 3D Convex Hull Algorithm for Coarse
Grained Multicomputers,” in Proceedings of the Seventh Annual ACM
Symposium on Parallel Algorithms and Architectures, ser. SPAA
’95. New York, NY: ACM, 1995, pp. 27–33. [Online]. Available:
http://doi.acm.org/10.1145/215399.215410

[12] G. Blelloch, J. C. Hardwick, G. L. Miller, and D. Talmor, “Design
and Implementation of a Practical Parallel Delaunay Algorithm,” AL-
GORITHMICA Special Issue on Coarse Grained Parallel Algorithms,
vol. 24, pp. 243–269, August 1999.

[13] P. Cignoni, C. Montani, R. Perego, and R. Scopigno, “Parallel 3d
Delaunay Triangulation,” in Computer Graphics Forum, vol. 12, no. 3.
Wiley Online Library, 1993, pp. 129–142.

[14] T. Peterka, J. Kwan, A. Pope, H. Finkel, K. Heitmann, S. Habib,
J. Wang, and G. Zagaris, “Meshing the Universe: Integrating Analysis
in Cosmological Simulations,” in Proceedings of the SC12 Ultrascale
Visualization Workshop, Salt Lake City, UT, 2012.

[15] T. Peterka, R. Ross, W. Kendall, A. Gyulassy, V. Pascucci, H.-W. Shen,
T.-Y. Lee, and A. Chaudhuri, “Scalable Parallel Building Blocks for
Custom Data Analysis,” in Proceedings of the 2011 IEEE Large Data
Analysis and Visualization Symposium LDAV’11, Providence, RI, 2011.

[16] T. Peterka and R. Ross, “Versatile Communication Algorithms for Data
Analysis,” in EuroMPI Special Session on Improving MPI User and
Developer Interaction IMUDI’12, Vienna, AT, 2012.

[17] A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,
W. Saphir, and T. Skjellum, “MPI-2: Extending the Message-Passing
Interface,” in Proceedings of Euro-Par’96, Lyon, France, 1996.

[18] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, S. Kumar, E. Lusk,
R. Thakur, and J. L. Träff, “MPI on a Million Processors,” in Proceed-
ings of the 16th European PVM/MPI Users’ Group Meeting on Recent
Advances in Parallel Virtual Machine and Message Passing Interface.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 20–30.

[19] A. Fabri and S. Pion, “CGAL: The Computational Geometry
Algorithms Library,” in Proceedings of the 17th ACM SIGSPATIAL
International Conference on Advances in Geographic Information
Systems, ser. GIS ’09. New York, NY: ACM, 2009, pp. 538–539.
[Online]. Available: http://doi.acm.org/10.1145/1653771.1653865

[20] M. H. Overmars, “Designing the Computational Geometry Algorithms
Library CGAL,” in ACM Workshop on Applied Computational Geom-
etry, M. C. Lin and D. Manocha, Eds., Philadelphia, PA, May, 27–28
1996, Lecture Notes in Computer Science 1148.

[21] R. C. Veltkamp, “Generic Programming in CGAL, the Computational
Geometry Algorithms Library,” in Proceedings of the 6th Eurographics
Workshop on Programming Paradigms in Graphics, Budapest, Hungary,
8 September 1997, 1997, pp. 127–138.

[22] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel netCDF:

A High-Performance Scientific I/O Interface,” in Proceedings of Super-
computing 2003, Phoenix, AZ, 2003.

[23] M. Folk, A. Cheng, and K. Yates, “HDF5: A File Format and I/O
Library for High Performance Computing Applications,” in Proceedings
of Supercomputing 1999, Portland, OR, 1999.

[24] K. Coloma, A. Ching, A. Choudhary, R. Ross, R. Thakur, and L. Ward,
“New Flexible MPI Collective I/O Implementation,” in Proceedings of
Cluster 2006, 2006.

[25] Y. Liu and J. Snoeyink, “A Comparison of Five Implementations of 3D
Delaunay Tessellation,” Combinatorial and Computational Geometry,
vol. 52, pp. 439–458, 2005.

[26] S. Habib, A. Pope, Z. Lukić, D. Daniel, P. Fasel, N. Desai, K. Heitmann,
C.-H. Hsu, L. Ankeny, G. Mark, S. Bhattacharya, and J. Ahrens,
“Hybrid Petacomputing Meets Cosmology: The Roadrunner Universe
Project,” Journal of Physics Conference Series, vol. 180, no. 1, p.
012019, 2009.

[27] A. Pope, S. Habib, Z. Lukic, D. Daniel, P. Fasel, K. Heitmann,
and N. Desai, “The Accelerated Universe,” Computing in Science
Engineering, vol. 12, no. 4, pp. 17 –25, July-Aug. 2010.

[28] S. Habib, V. Morozov, H. Finkel, A. Pope, K. Heitmann, K. Kumaran,
T. Peterka, J. Insley, D. Daniel, P. Fasel, N. Frontiere, and Z. Lukic,
“The Universe at Extreme Scale: Multi-Petaflop Sky Simulation on the
BG/Q,” in Proceedings of SC12, Salt Lake City, UT, 2012.

[29] S. Habib, V. Morozov, N. Frontiere, H. F. A. Pope, and K. Heitmann,
“HACC: Extreme Scaling and Performance Across Diverse Architec-
tures,” in Proceedings of SC13: International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC13.
New York, NY: ACM, 2013, pp. 6:1–6:10.

[30] A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Lukić, and E. Van Andel,
“Nyx: A Massively Parallel AMR Code for Computational Cosmology,”
The Astrophysical Journal, vol. 765, pp. 39–52, 2013.

[31] C. L. Phillips, C. R. Iacovella, and S. C. Glotzer, “Stability of the Dou-
ble Gyroid Phase to Nanoparticle Polydispersity in Polymer-Tethered
Nanosphere Systems,” Soft Matter, vol. 6, pp. 1693–1703, 2010.

[32] D. Q. Pike, F. A. Detcheverry, M. Mller, and J. J. de Pablo,
“Theoretically Informed Coarse Grain Simulations of Polymeric
Systems,” The Journal of Chemical Physics, vol. 131, no. 8, pp. –,
2009. [Online]. Available: http://scitation.aip.org/content/aip/journal/
jcp/131/8/10.1063/1.3187936

[33] R. L. Marson, C. L. Phillips, J. A. Anderson, and S. C. Glotzer, “Phase
Behavior and Complex Crystal Structures of Self-Assembled Tethered
Nanoparticle Telechelics,” Nano Letters, 2014.

[34] K. Bowers, B. Albright, L. Yin, B. Bergen, and T. Kwan, “Ultrahigh
Performance Three-Dimensional Electromagnetic Relativistic Kinetic
Plasma Simulation,” Physics of Plasmas, vol. 15, pp. 055 703–1–
055 703–7, 2008.

[35] S. Byna, J. Chou, O. Rübel, Prabhat, H. Karimabadi, W. S. Daughton,
V. Roytershteyn, E. W. Bethel, M. Howison, K.-J. Hsu, K.-W.
Lin, A. Shoshani, A. Uselton, and K. Wu, “Parallel I/O, Analysis,
and Visualization of a Trillion Particle Simulation,” in Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’12. Los Alamitos,
CA: IEEE Computer Society Press, 2012, pp. 59:1–59:12. [Online].
Available: http://dl.acm.org/citation.cfm?id=2388996.2389077

